Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors. Mechanistically, we found a crucial AMPK-CLYBL acetylation positive feedback loop, triggered by toll-like receptors (TLRs), involving AMPK hypophosphorylation and CLYBL hyperacetylation. The deacetylase enzyme SIRT2 acted as the bridge between AMPK phosphorylation and CLYBL acetylation, thereby regulating macrophage polarization and the release of pro-inflammatory cytokines. Furthermore, CLYBL hypoacetylation decreased monocyte infiltration, thereby alleviating cardiac remodeling. These findings suggest that the AMPK-CLYBL acetylation positive feedback loop serves as a metabolic switch driving inflammatory response and inhibiting CLYBL-K154 acetylation may offer a promising therapeutic strategy for inflammatory response-related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41419-025-07362-0DOI Listing

Publication Analysis

Top Keywords

positive feedback
12
feedback loop
12
metabolic rewiring
12
involving ampk
8
clybl acetylation
8
clybl-k154 acetylation
8
release pro-inflammatory
8
ampk-clybl acetylation
8
acetylation positive
8
acetylation
7

Similar Publications

Background: Medication nonadherence remains a significant challenge in the management of chronic conditions, often leading to suboptimal treatment outcomes and increased health care costs. Innovative interventions that address the underlying factors contributing to nonadherence are needed. Gamified mobile apps have shown promise in promoting behavior change and engagement.

View Article and Find Full Text PDF

Evaluating Clinician Experience in Health Care Transition: Results From Six Health Systems.

J Adolesc Health

January 2025

The National Alliance to Advance Adolescent Health/Got Transition, Washington, D.C.

Purpose: There is a paucity of evidence examining clinician experiences with structured health-care transition (HCT) programs. Among HCT Learning Collaborative participants, this study describes clinician experiences with implementation of a structured HCT process: Got Transition's 6 Core Elements.

Methods: Representative members from 6 health systems designed a survey to collect clinician feedback regarding HCT and demographic and practice information.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Two event-related brain potential (ERP) components, the frontocentral feedback-related negativity (FRN) and the posterior P300, are key in feedback processing. The FRN typically exhibits greater amplitude in response to negative and unexpected outcomes, whereas the P300 is generally more pronounced for positive outcomes. In an influential ERP study, Hajcak et al.

View Article and Find Full Text PDF

A Lipoxygenase Gene Modulates Jasmonate Biosynthesis to Enhance Blast Resistance in Rice.

J Exp Bot

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.

Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!