The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film. The reconstructed 2D/3D perovskite interface exhibits reduced energetic disorder and yields cells with improved performance compared with control 2D/3D samples. PSCs fabricated with the meta-amidinopyridine-induced phase-pure 2D perovskite passivation show a maximum power conversion efficiency of 26.05% (a certified value of 25.44%). Under damp heat and outdoor tests, the encapsulated PSCs maintain 82% and 75% of their initial PCE after 1000 h and 840 h, respectively, demonstrating improved practical durability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-56409-5 | DOI Listing |
Nat Commun
January 2025
KAUST Solar Center (KSC), Physical and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!