The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties. To overcome these limitations, we developed a rapid human NMJ model using cryopreserved MNs and SKMs derived from iPSCs. Within 12 days of coculture, we successfully recreated NMJ-specific connectivity that closely mirrors in vivo synapse formation. Using this model, we investigated amyotrophic lateral sclerosis (ALS) and replicated ALS-specific NMJ cytopathies with SOD1 mutant and corrected isogenic iPSC lines. Quantitative analysis of 3D confocal microscopy images revealed a critical role of MNs in initiating ALS-related NMJ cytopathies, characterized by alterations in the volume, number, intensity, and distribution of acetylcholine receptors, ultimately leading to impaired muscle contractions. Our rapid and precise in vitro NMJ model offers significant potential for advancing research on NMJ physiology and pathology, as well as for developing treatments for NMJ-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41420-025-02302-5DOI Listing

Publication Analysis

Top Keywords

neuromuscular junction
8
amyotrophic lateral
8
lateral sclerosis
8
nmj
8
nmj model
8
nmj cytopathies
8
rapid ipsc-derived
4
ipsc-derived neuromuscular
4
model
4
junction model
4

Similar Publications

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.

View Article and Find Full Text PDF

Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.

View Article and Find Full Text PDF

Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life.

View Article and Find Full Text PDF

Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner.

Cell Death Dis

January 2025

Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.

Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!