Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.
Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model. To assess the model's performance, 15 cone-beam computed tomography scans from the test group were inputted into the model. The ground truth was obtained from manual segmentation data. Metrics including the Dice similarity coefficient, Hausdorff 95%, precision, recall, and segmentation times were calculated. In addition, surface deviations and volumetric differences between the automated and manual segmentation results were analyzed.
Results: The automated model showed a high level of similarity to the manual segmentation results, with a mean Dice similarity coefficient of 0.926 ± 0.014. The Hausdorff distance was 1.358 ± 0.466 mm, whereas the mean recall and precision values were 0.941 ± 0.028 and 0.941 ± 0.022, respectively. There were no statistically significant differences in the arithmetic mean of the surface deviation for the entire mandible and 11 different anatomic regions. In terms of volumetric comparisons, the difference between the 2 groups was 1.62 mm³, which was not statistically significant.
Conclusions: The automated model was found to be suitable for clinical use, demonstrating a high degree of agreement with the reference manual method. Clinicians can use open-source software to develop custom automated segmentation models tailored to their specific needs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2024.09.006 | DOI Listing |
Am J Orthod Dentofacial Orthop
February 2025
Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.
Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model.
Bone
January 2025
ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples.
View Article and Find Full Text PDFObjective: The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC).
Methods: A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software.
Sensors (Basel)
January 2025
Department of Architectural Engineering, Dankook University, 152 Jukjeon-ro, Yongin-si 16890, Republic of Korea.
In the construction industry, ensuring the proper installation, retention, and dismantling of temporary structures, such as jack supports, is critical to maintaining safety and project timelines. However, inconsistencies between on-site data and construction documentation remain a significant challenge. To address this, this study proposes an integrated monitoring framework that combines computer vision-based object detection and document recognition techniques.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering, Tsinghua University, Shuang Qing Road, Beijing 100084, China.
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!