Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility. The TOCN/AC composite beads had porous surface and exhibited extraordinary adsorption properties. The beads had a high adsorption capacity for creatinine with the optimal adsorption capacity of 83.33 mg g. And the equilibrium adsorption of bilirubin, uric acid and Cu by TOCN/AC beads was as high as 159.80 mg g, 114.61 mg g and 154.0 mg g, respectively, with a mass ratio of TOCN to AC of 1:4. It is also observed that the adsorption behavior of TOCN/AC beads on creatinine was consistent with the second-order kinetics and Langmuir isothermal model. The hemolysis rate of TOCN/AC was 1.21 %, indicating that TOCN/AC beads had good blood compatibility. The clearance of creatinine toxin in blood by TOCN/AC beads was as high as 87 % within 90 min. Overall, our produced composite beads had great potential for application in the field of blood purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!