The Cry2Aa protein is not enough to pose a threat to Pardosa astrigera.

Int J Biol Macromol

Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

Published: January 2025

The widespread commercialization of genetically modified (GM) crops makes it important to assess the potential impact of Bacillus thuringiensis (Bt) on non-target organisms. Pardosa astrigera is an important predator in agroforestry ecosystems, and female and male spiders may react differently to Bt toxins due to their different activity habits and nutritional requirements. In this study, we found that exposure to Cry2Aa protein did not affect the survival and body weight of P. astrigera during growth and development. However, according to 16S rRNA sequencing results of the P. astrigera adults, Cry2Aa protein not only changed the diversity of symbiont bacteria, but also changed its symbiont composition. During feeding on prey without Bt artificial feed, the dominant communities in female and male adults were Actinobacteria and Corynebacterium-1, respectively. Feeding on prey containing Cry2Aa protein, Firmicutes were the dominant phyla. At the genus level, Cry2Aa protein significantly increased the relative abundance of Enterococcus and became the dominant genus in females only. In addition, Bacillus, Weissella and other symbiotic bacteria had significant changes in females. In terms of species composition, sex differences resulted in the absence of different types of symbiotic bacteria. Functional analysis of enrichment pathways showed significant changes in various metabolic pathways such as "Carbohydrate metabolism" and "Nucleotide metabolism", and there are differences between the sexes. These findings provide new data information and support for revealing the different strategies of spiders to cope with Cry2Aa protein based on sex differences, and also provide new data information and support for environmental safety assessment of GM crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140241DOI Listing

Publication Analysis

Top Keywords

cry2aa protein
24
pardosa astrigera
8
female male
8
feeding prey
8
symbiotic bacteria
8
sex differences
8
provide data
8
data support
8
cry2aa
6
protein
5

Similar Publications

The Cry2Aa protein is not enough to pose a threat to Pardosa astrigera.

Int J Biol Macromol

January 2025

Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

The widespread commercialization of genetically modified (GM) crops makes it important to assess the potential impact of Bacillus thuringiensis (Bt) on non-target organisms. Pardosa astrigera is an important predator in agroforestry ecosystems, and female and male spiders may react differently to Bt toxins due to their different activity habits and nutritional requirements. In this study, we found that exposure to Cry2Aa protein did not affect the survival and body weight of P.

View Article and Find Full Text PDF

Enhances the resistance of rice to lepidopteran pests by fusing the Cry1Ca and Cry2Aa genes with self-cleavage peptide sequence.

Pest Manag Sci

February 2025

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Background: Accumulation of two or more Bacillus thuringiensis (Bt) proteins in plant not only improves the resistance to pests and broadens the resistance spectrum of crops, but also delays the development of pest resistance.

Results: The self-cleavage peptide sequence was used to link two codon-optimized genes, so as to achieve simultaneous accumulation of two low homologous insecticidal proteins in one plant. The rice transformants accumulating Cry1Ca and Cry2Aa proteins were fed to local lepidopteran pests and the larva mortality in 5 days were 100%.

View Article and Find Full Text PDF

Rational design and application of broad-spectrum antibodies for Bt Cry toxins determination.

Anal Biochem

October 2024

Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China. Electronic address:

Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC) values of 0.

View Article and Find Full Text PDF

Characterization of the individual domains of the Bacillus thuringiensis Cry2Aa implicates Domain I as a possible binding site to Helicoverpa armigera.

J Invertebr Pathol

July 2024

School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China. Electronic address:

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins.

View Article and Find Full Text PDF

By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!