Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2025.177294 | DOI Listing |
J Surg Oncol
January 2025
Department of Surgery, Los Angeles General Medical Center, Los Angeles, California, USA.
J Surg Oncol
January 2025
Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, and Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Background And Objectives: Identification of colorectal cancer (CRC) patients at high risk of recurrence could be of substantial clinical use. We evaluated the association of ctDNA status, using a tumor-informed assay, with recurrence-free survival (RFS).
Methods: Stage III CRC patients were enrolled between 2016 and 2020.
Mol Cancer
January 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
Cell Biochem Biophys
January 2025
Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
Inflammatory bowel disease is a collection of intestinal disorders that cause inflammation in the digestive tract. Prolonged inflammation in the gastrointestinal tract is a major risk factor for colorectal cancer. The objective of this study was to fucus on gene expression levels of (KRT-14; associated with epithelial cell integrity) and enhancer of zeste homolog-1 (EZH-2; involved in cellular proliferation) in a IBD rat model in order to rule out impact of nutraceuticals (pumpkin seed oil; PSO) as a complementary approach to conventional treatments of IBD.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!