Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy. To overcome these limitations, we develop MPEMDA, a novel method that pre-completes the microbe-drug association matrix using various similarity combinations and employs a label propagation algorithm with error correction to predict microbe-drug associations. Compared with existing methods, MPEMDA simultaneously utilizes the integrated and individual similarities obtained through the Similarity Network Fusion (SNF) method to pre-complete the known drug-microbe association matrix, followed by error correction to optimize the predictive scores generated by the label propagation algorithm. Experimental results on three benchmark datasets show that MPEMDA outperforms state-of-the-art methods in both the 5-fold cross-validation and de novo test. Additionally, case studies on drugs and microbes highlight the method's strong potential to identify novel microbe-drug associations. The MPEMDA code is available at https://github.com/lyx8527/MPEMDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.12.013 | DOI Listing |
Methods
January 2025
School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.
Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China.
The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Computer Science and Technology, Shantou University, Shantou 515063, China.
The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.
View Article and Find Full Text PDFMol Omics
January 2025
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
Extensive research has confirmed the widespread presence of microorganisms in the human body and their crucial impact on human health, with drugs being an effective method of regulation. Hence it is essential to identify potential microbe-drug associations (MDAs). Owing to the limitations of wet experiments, such as high costs and long durations, computational methods for binary classification tasks have become valuable alternatives for traditional experimental approaches.
View Article and Find Full Text PDFSci Rep
September 2024
Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China.
The human microbiome plays a key role in drug development and precision medicine, but understanding its complex interactions with drugs remains a challenge. Identifying microbe-drug associations not only enhances our understanding of their mechanisms but also aids in drug discovery and repurposing. Traditional experiments are expensive and time-consuming, making computational methods for predicting microbe-drug associations a new trend.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!