Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease. Specific modifications in DNA methylation, histone marks, and non-coding RNAs are emerging as robust predictors of disease progression and patient survival, offering the potential for more precise prognostic tools compared to conventional clinical staging. Moreover, the detection of epigenetic alterations in blood and other non-invasive samples holds promise for earlier diagnosis and improved manage- ment of PDAC. This review comprehensively summarises current epigenetic research in PDAC and identifies persisting challenges. These include the complex nature of epigenetic profiles, tumour hetero- geneity, limited access to early-stage samples, and the need for highly sensitive liquid biopsy technologies. Addressing these challenges requires the standardisation of methodologies, integra- tion of multi-omics data, and leveraging advanced computational tools such as machine learning and artificial intelligence. While resource-intensive, these efforts are essential for unravelling the functional consequences of epigenetic changes and translating this knowledge into clinical appli- cations. By overcoming these hurdles, epigenetic research has the potential to revolutionise the management of PDAC and improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2025.01.003 | DOI Listing |
Nat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFSemin Cancer Biol
January 2025
Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.
Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.
Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!