P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs.

J Biol Chem

Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:

Published: January 2025

Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step towards reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0-13.4 kb in size and encoding ten epigenetic regulators with links to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-COV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency at ∼100% for a wide spectrum of plasmids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2025.108219DOI Listing

Publication Analysis

Top Keywords

site-directed mutagenesis
12
primer pairs
12
method
8
pairs 3'-overhangs
8
quickchange method
8
expression vectors
8
efficiency
5
mutagenesis efficient
4
efficient method
4
method based
4

Similar Publications

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs.

J Biol Chem

January 2025

Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:

Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.

View Article and Find Full Text PDF

On the Biosynthesis of Bioactive Tryptamines in Black Cohosh ( L.).

Plants (Basel)

January 2025

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.

Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.

View Article and Find Full Text PDF

The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.

View Article and Find Full Text PDF

Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!