Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells. Furthermore, the probiotics improved the function of the mucosal immune system, increased the level of SIgA, level of IgG and number of B220IgA, and activated germinal center B cells. The challenge experiment revealed that the probiotics alleviated weight loss, reduced pathological injury to the lungs, and protected the mice from virus infection. We also observed that the serum neutralizing antibodies of immunized piglets significantly increased, which reduced the shedding frequency of swine influenza virus in the nose of the piglets and reduced the pathological damage by activating the T cell immune response in infected piglets. Thus, the constructed probiotics are promising candidates for effective non-traditional swine influenza vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2025.110401 | DOI Listing |
Vet Microbiol
January 2025
College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells.
View Article and Find Full Text PDFPoult Sci
January 2025
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China. Electronic address:
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs).
View Article and Find Full Text PDFViruses
January 2025
School of Public Health, Bengbu Medical University, Bengbu 233030, China.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.
View Article and Find Full Text PDFViruses
January 2025
Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan.
The outbreaks of several epidemics caused by pathogenic avian viruses pose significant threats to the poultry industry [...
View Article and Find Full Text PDFViruses
January 2025
Département de Virologie, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!