The kinetics of aqueous thiolated arsenic oxidation.

J Hazard Mater

Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada. Electronic address:

Published: January 2025

Thiolated arsenic (As) compounds have been identified in various natural and engineered environments worldwide and are important for the biogeochemical cycling of As, yet quantitative data regarding their stability and transformation rates remains scarce. This study investigates the oxidation kinetics of mono-, di-, and tri-thioarsenate at varying pH, Fe, and (thio-)As concentrations in the aqueous phase. Experiments conducted over four weeks revealed that all thioarsenates were oxidized faster at lower pH, with rates of up to several μmoles/L/d at a pH of 3. Trithioarsenate demonstrated approximately two orders-of-magnitude faster oxidation rates than di- and monothioarsenate and these rates exhibited a higher sensitivity to pH and dissolved As and Fe concentrations. The presence of Fe enhanced the oxidation rates of trithioarsenate but had less impact on di- and monothioarsenate. Kinetic data were subsequently used to parameterize oxidation rate equations and determine reaction orders, and to calibrate a kinetic model that was leveraged to determine rate constants. The fundamental insights and kinetic parameters derived for thio-As oxidation in this study are important for predicting the mobility of thio-As compounds and for assessing the potential environmental impacts of As across ambient aquatic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137334DOI Listing

Publication Analysis

Top Keywords

thiolated arsenic
8
oxidation rates
8
di- monothioarsenate
8
oxidation
6
rates
5
kinetics aqueous
4
aqueous thiolated
4
arsenic oxidation
4
oxidation thiolated
4
arsenic compounds
4

Similar Publications

The kinetics of aqueous thiolated arsenic oxidation.

J Hazard Mater

January 2025

Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada. Electronic address:

Thiolated arsenic (As) compounds have been identified in various natural and engineered environments worldwide and are important for the biogeochemical cycling of As, yet quantitative data regarding their stability and transformation rates remains scarce. This study investigates the oxidation kinetics of mono-, di-, and tri-thioarsenate at varying pH, Fe, and (thio-)As concentrations in the aqueous phase. Experiments conducted over four weeks revealed that all thioarsenates were oxidized faster at lower pH, with rates of up to several μmoles/L/d at a pH of 3.

View Article and Find Full Text PDF

Feasible approaches for arsenic speciation analysis in foods for dietary exposure assessment: a review.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

Arsenic (As) occurs naturally in different forms and oxidation states. Amongst them, inorganic arsenic (iAs) is classified as both genotoxic and carcinogenic whilst other organic arsenic species are considered less toxic. As in rice is mainly present in the form of iAs which therefore poses a health risk to populations that consume rice as a staple food.

View Article and Find Full Text PDF

Thioarsenate sorbs to natural organic matter through ferric iron-bridged ternary complexation to a lower extent than arsenite.

J Hazard Mater

January 2025

Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany. Electronic address:

Understanding processes regulating thioarsenate (HAsSO; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated.

View Article and Find Full Text PDF

Long-Term Paddy Soil Development Buffers the Increase in Arsenic Methylation and Thiolation after Sulfate Fertilization.

J Agric Food Chem

November 2024

Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95440, Germany.

Sulfate fertilization has been proposed to limit arsenic (As) mobility in paddy soils and accumulation in rice grains. However, As and sulfur (S) have complex biogeochemical interactions. Besides the desired precipitation of sulfides that sorb or incorporate As, S can enhance As biotic methylation and abiotic thiolation.

View Article and Find Full Text PDF

Microbial arsenic methylation in soil-water systems and its environmental significance.

Sci Total Environ

September 2024

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!