Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03.

J Hazard Mater

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:

Published: January 2025

The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp. W03 for degrading TCS metabolically at concentrations up to 10 mg/L. This strain exhibited optimal degradation activity at 30°C and pH 7.0, and retained substantial activity at pH 4.0, although it was sensitive to alkaline conditions. Genomic analysis of strain W03 revealed a circular chromosome comprising 6075,907 bp with a GC content of 65.08 %. A novel TCS degradation pathway, involving dechlorination, oxidation, ether bond fission, and reoxidation processes, was identified. Also, the study mapped the global distribution of analogous Pseudomonas using 16S rRNA gene sequences, revealing their widespread presence in diverse aquatic environments, with a significant abundance in wastewater systems. These findings indicated that these bacteria play a critical ecological role in both natural and engineered environments, particularly in the degradation of organic pollutants. This study enhances our understanding of microbial degradation of emerging contaminants and presents a promising candidate for bioremediation strategies aimed at mitigating TCS-related water pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137313DOI Listing

Publication Analysis

Top Keywords

strain w03
8
unveiling triclosan
4
triclosan biodegradation
4
biodegradation novel
4
novel metabolic
4
metabolic pathways
4
pathways genomic
4
genomic insights
4
insights global
4
global environmental
4

Similar Publications

Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03.

J Hazard Mater

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:

The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.

View Article and Find Full Text PDF

Mechanism of Fumonisin Self-Resistance: Contains Four Fumonisin B-Insensitive-Ceramide Synthases.

Toxins (Basel)

May 2024

Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU University, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.

produces fumonisins, which are mycotoxins inhibiting sphingolipid biosynthesis in humans, animals, and other eukaryotes. Fumonisins are presumed virulence factors of plant pathogens, but may also play a role in interactions between competing fungi. We observed higher resistance to added fumonisin B (FB) in fumonisin-producing than in nonproducing , and likewise between isolates of and differing in production of sphinganine-analog toxins.

View Article and Find Full Text PDF

Fumonisins can cause diseases in animals and humans consuming -contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.

View Article and Find Full Text PDF

Toward personalization of asthma treatment according to trigger factors.

J Allergy Clin Immunol

June 2020

Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Karl Landsteiner University, Krems, Austria. Electronic address:

Asthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. Although in the past few drugs for the treatment of asthma were available, new treatment options are currently emerging, which appear to be highly effective in certain subgroups of patients. Accordingly, there is a need for biomarkers that allow selection of patients for refined and personalized treatment strategies.

View Article and Find Full Text PDF

L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts.

Appl Ergon

July 2014

Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Noerre Alle 51, Copenhagen DK-2200N, Denmark. Electronic address:

The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20 kg standard meal cart (L: 0.5m × W: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!