This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.27 %-79.52 %), oil-binding capacity (68.38 %-97.47 %), and particle size (1364-3532 nm) tests were performed on the oleogels. Oleofilms (OF, OF20, OF40, OF60, OF80, and OF100) were then formulated using the respective oleogels. Their visual, surface, and cross-sectional images were evaluated. The thickness (0.18-0.25 mm) and water content (7.32 %-11.73 %) of oleofilms were investigated. Alterations in color and opacity (3.50-5.49) of the oleofilms were apparent. OF80 exhibited lower water (0.44 g.mm/m.h.kPa)/oxygen permeability (peroxide value: 2.31-14.30 meq O/kg), along with improved mechanical properties (tensile strength: 3.25 MPa; elongation at break: 128.23 %). OF80-coated pineapples demonstrated the highest resistance to spoilage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.142989DOI Listing

Publication Analysis

Top Keywords

ultrasonic emulsification
8
oleofilms
5
facile synthesis
4
synthesis olive
4
olive oil-incorporated
4
oil-incorporated oleofilms
4
oleofilms high-power
4
high-power ultrasonic
4
emulsification sustainable
4
sustainable packaging
4

Similar Publications

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.

View Article and Find Full Text PDF

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

In the present study, the impact of ultrasonication treatment (US) at varying time duration (10 and 20 min) on pearl millet protein (PMP) was evaluated. The native and ultrasonicated PMP were evaluated for techno-functional properties, zeta potential, particle size, SEM, FTIR, thermal properties and dynamic rheology. The significant (p < 0.

View Article and Find Full Text PDF

The self-assembly of rice glutelin (RG) into RG fibrils (RGFs) represents a promising strategy for enhancing its functional properties. In this study, we investigated the effects of ultrasonic pretreatment on the fibrillation kinetics, structural characteristics, and functional properties of RGFs. The results indicated that ultrasonic pretreatment facilitated the unfolding of RG, resulting in an increased H and β-sheet, thereby accelerating the formation of RGFs and enhancing the fibril conversion rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!