Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown. In this study, we found that environmental OTC concentrations significantly inhibited plant growth and metabolism, whereas exogenous EBL could restore plant growth characteristics. Exogenous EBL significantly decreased reactive oxygen species (ROS) accumulation, alleviating OTC-induced cell membrane lipid peroxidation. This was achieved by increasing the antioxidant capacity and secondary metabolism levels. Notably, our findings suggested that EBL stimulated glutathione S-transferase (GST) and glutathione reductase (GR) activities, enhancing reduced glutathione synthesis and participating in plant OTC detoxification. OTC residues in EBL + OTC-treated seedlings at 21 d were significantly reduced by 29 % compared with OTC alone. Further transcriptomic and metabolomic analyses revealed that the differentially expressed genes and metabolites in the EBL and OTC alone or combined treatment groups were primarily involved in the regulation of phenylpropanoid biosynthesis, glutathione metabolism, and lant hormone signal transduction pathways in response to phytotoxic effects and detoxification mechanisms, as compared to the control group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.117763 | DOI Listing |
J Exp Bot
January 2025
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.
View Article and Find Full Text PDFJ Plant Res
January 2025
College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224002, Jiangsu, China.
Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.
View Article and Find Full Text PDFBot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya, 42310, Türkiye.
Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!