Sparse wavefield reconstruction based on Physics-Informed neural networks.

Ultrasonics

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Published: January 2025

In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time. In this work, we propose a method based on physics-informed neural networks to decrease the required sampling measurements. We utilize sparse sampling of full experimental data as input data to reconstruct complete wavefield data. Specifically, we employ physics-informed neural networks to learn the propagation characteristics from the sparsely sampled data and partition the complete grid to reconstruct the full wavefield. We achieved 95% reconstruction accuracy using four hundredth of the total measurements. The proposed method can be utilized not only for sparse wavefield reconstruction in LU testing but also for other wavefield reconstructions, such as those required in online monitoring systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2025.107582DOI Listing

Publication Analysis

Top Keywords

physics-informed neural
12
neural networks
12
sparse wavefield
8
wavefield reconstruction
8
based physics-informed
8
complete wavefield
8
wavefield data
8
wavefield
5
data
5
reconstruction based
4

Similar Publications

Sparse wavefield reconstruction based on Physics-Informed neural networks.

Ultrasonics

January 2025

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time.

View Article and Find Full Text PDF

Physics-informed Neural Implicit Flow neural network for parametric PDEs.

Neural Netw

January 2025

Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China; Intelligent Game and Decision Laboratory, China.

The Physics-informed Neural Network (PINN) has been a popular method for solving partial differential equations (PDEs) due to its flexibility. However, PINN still faces challenges in characterizing spatio-temporal correlations when solving parametric PDEs due to network limitations. To address this issue, we propose a Physics-Informed Neural Implicit Flow (PINIF) framework, which enables a meshless low-rank representation of the parametric spatio-temporal field based on the expressiveness of the Neural Implicit Flow (NIF), enabling a meshless low-rank representation.

View Article and Find Full Text PDF

Improving ocean reanalyses of observationally sparse regions with transfer learning.

Sci Rep

January 2025

Institute of Oceanography, Center for Earth System Sustainability, Universität Hamburg, Hamburg, Germany.

Oceanic subsurface observations are sparse and lead to large uncertainties in any model-based estimate. We investigate the applicability of transfer learning based neural networks to reconstruct North Atlantic temperatures in times with sparse observations. Our network is trained on a time period with abundant observations to learn realistic physical behavior.

View Article and Find Full Text PDF

Physics-informed deep learning quantifies propagated uncertainty in seismic structure and hypocenter determination.

Sci Rep

January 2025

Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 2360001, Japan.

Subsurface seismic velocity structure is essential for earthquake source studies, including hypocenter determination. Conventional hypocenter determination methods ignore the inherent uncertainty in seismic velocity structure models, and the impact of this oversight has not been thoroughly investigated. Here, we address this issue by employing a physics-informed deep learning (PIDL) approach that quantifies uncertainty in two-dimensional seismic velocity structure modeling and its propagation to hypocenter determination by introducing neural network ensembles trained on active seismic survey data, earthquake observation data, and the physical equation of wavefront movement.

View Article and Find Full Text PDF

The proliferation of sophisticated counterfeiting poses critical challenges to global security and commerce, with annual losses exceeding $2.2 trillion. This paper presents a novel physics-constrained deep learning framework for high-precision security ink colorimetry, integrating three key innovations: a physics-informed neural architecture achieving unprecedented color prediction accuracy (CIEDE2000 (ΔE00): 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!