In modern cancer biology, Hanahan and Weinberg's classic depiction of the Hallmarks of Cancer serves as a heuristic for understanding malignant phenotypes [1]. Genetic determinants of these phenotypes promote cancer induction and progression, and these mutations drive current approaches to understanding and treating cancer. Meanwhile, for over a century, pathologists have noted that profound alterations of nuclear structure accompany transformation, integrating these changes into diagnostic classifications (Figure 1). Nevertheless, the relationship of nuclear organization to malignant phenotypes has lagged. Recent advances yield profound insight into the 3D genome's relationship with cancer phenotypes, suggesting that spatial genome organization influences many, if not all, of these malignant features. Here, we highlight recent discoveries elucidating connections between 3D genome organization and cancer phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2024.102307 | DOI Listing |
Cancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFStat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
January 2025
Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India. Electronic address:
Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!