Understanding complex volcanic hydrosystems using a multi-tracer approach.

Sci Total Environ

CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.

Published: January 2025

Climate change affects groundwater availability and residence times, necessitating a thorough understanding of aquifer characteristics to define sustainable yields, particularly in regions where water is heavily exploited. This study focuses on the Volvic volcanic aquifer (Chaîne des Puys, France), where groundwater recharge has decreased due to climate change, raising concerns about water use sustainability. To address these challenges, this work proposes a multi-tracer approach, based on hydrogeological monitoring, including the estimation of groundwater ages, major elements chemistry and water stable isotopes to better characterise this resource decrease and more peculiarly its origin and its impact on the environment that has never been addressed. Relative fractions of ancient and modern water contributions (up to 20 %) to the aquifer have been thus estimated as well as the apparent ages of groundwaters (34 years). We highlight the complementarity of tracers used, allowing a better definition of recharge sources and transit times of groundwaters within the aquifer. These results led to the proposal of a hydrogeological conceptual model, highlighting a bi-modal recharge, distinguishing between a long-term recharge upon 30 years, supplemented by a recent component (≃ 1 year) related to annual precipitation. This study provides valuable information on groundwater circulation and the response of volcanic aquifers systems to climate change, while highlighting the importance of assessing residence times. By addressing the challenges posed by systems with contrasting permeability and recharge gradients, it improves understanding of volcanic hydrology and provides a basis for the development of (numerical) hydrological models to assess the impacts of global change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178421DOI Listing

Publication Analysis

Top Keywords

climate change
12
multi-tracer approach
8
residence times
8
recharge
5
understanding complex
4
volcanic
4
complex volcanic
4
volcanic hydrosystems
4
hydrosystems multi-tracer
4
approach climate
4

Similar Publications

Soil oil pollution is a major environmental issue, especially in oil-producing nations, as it threatens the health of plants, animals, and humans. While bioremediation has been extensively utilized as a cost-effective method for restoring oil-contaminated soil, its environmental impact has garnered relatively little attention. Researchers often concentrate on reducing pollutant concentrations below permissible limits to restore soil quality.

View Article and Find Full Text PDF

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

Extending from Adaptation to Resilience Pathways: Perspectives from the Conceptual Framework to Key Insights.

Environ Manage

January 2025

TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.

The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.

View Article and Find Full Text PDF

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!