Microplastics (MPs) have become a notable concern and are released into the environment through the disposal or fragmentation of large plastics. Rivers have been the major pathways for MPs present in the oceans, which significantly affects the marine environment. In the current study, water samples were collected from the upper stream and downstream of Damanganga and Tapi rivers across different sites in the state of Gujarat, India for exploration of MPs contamination. Additionally, samples were also collected from Dumas Beach to detect the presence of MPs. MPs were extracted from the samples through sieving, density separation and wet peroxide oxidation (WPO) techniques which were subsequently analyzed using μ-FTIR, optical microscope, Pyrolysis GCMS (Py-GCMS) and SEM. The concentration of MPs was also quantified from each stretch of Damanganga, Tapi rivers as well as Dumas Beach. Findings revealed that Damanganga showed a higher concentration (3.53 particles/L) of MPs as compared to others. Further, optical microscope and μ-FTIR analysis confirm the presence of MPs like Polypropylene (PP), Polystyrene (PS), Polyethylene terephthalate (PET), Polyethylene (PE) and Polymethyl Methacrylate (PMMA). Pyrolysis products of PP, PS and Polyamide (PA) were detected from Py-GCMS studies. Additionally, SEM images revealed that MPs were subjected to weathering, oxidation and atmospheric deposition over the years. The study additionally confirmed the flux of MPs in both the rivers and beach due to anthropogenic and industrial effects. Risk assessment of MPs was performed using the Pollutant Loading Index (PLI), which indicated that the overall MPs pollution in the studied sites was marginal. Nevertheless, the PLI scores revealed that Damanganga was the most prone to MP pollution among the three study sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/inteam/vjaf011 | DOI Listing |
Environ Res
January 2025
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.. Electronic address:
Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing to their potential biological impact on human health. These particles exhibit a range of physicochemical properties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, enabling staining for dynamic analyses within biological systems.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Geographical Science, Harbin Normal University, Harbin 150025, China.
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI).
View Article and Find Full Text PDFAquat Toxicol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR).
View Article and Find Full Text PDFChemosphere
January 2025
DASCO Inc, Centennial, Colorado, USA.
This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:
The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!