Purpose: To compare the performance of ultrafast MRI with standard MRI in classifying histological factors and subtypes of invasive breast cancer among radiologists with varying experience.
Methods: From October 2021 to November 2022, this prospective study enrolled 225 participants with 233 breast cancers before treatment (NCT06104189 at clinicaltrials.gov). Tumor segmentation on MRI was performed independently by two readers (R1, dedicated breast radiologist; R2, radiology resident). We extracted 1618 radiomic features and four kinetic features from ultrafast and standard images, respectively. Logistic regression algorithms were adopted for prediction modeling, following feature selection by the least absolute shrinkage and selection operator. The performance of predicting histological factors and subtypes was evaluated using the area under the receiver-operating characteristic curve (AUC). Performance differences between MRI methods and radiologists were assessed using the DeLong test.
Results: Ultrafast MRI outperformed standard MRI in predicting HER2 status (AUCs [95% CI] of ultrafast MRI vs standard MRI; 0.87 [0.83-0.91] vs 0.77 [0.64-0.90] for R1 and 0.88 [0.83-0.91] vs 0.77 [0.69-0.84] for R2) (all P < 0.05). Both ultrafast MRI and standard MRI showed comparable performance in predicting hormone receptors. Ultrafast MRI exhibited superior performance to standard MRI in classifying subtypes. The classification of the luminal subtype for both readers, the HER2-overexpressed subtype for R2, and the triple-negative subtype for R1 was significantly better with ultrafast MRI (P < 0.05).
Conclusion: Ultrafast MRI-based radiomics holds promise as a noninvasive imaging biomarker for classifying hormone receptors, HER2 status, and molecular subtypes compared to standard MRI, regardless of radiologist experience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-025-01956-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!