Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis. The maximum adsorption efficiency achieved was 97% (23 mg/g) for CV and 95% (13 mg/g) for MB under optimal conditions within an equilibrium time of 50 min. The adsorption capacity increased with the ionic strength of the dye solution, reaching 35 mg/g for CV and 28 mg/g for MB. The kinetic study showed that the adsorption of CV and MB is well described by the pseudo-second-order kinetic model (R = 0.999) and fits the Freundlich model significantly, with an R = 0.99 for both studied molecules. The thermodynamic analysis (ΔH° = 22.647 and 14.907 kJ.mol, ΔS° = 88.627 and 47.330 J.mol.K for CV and MB, respectively) revealed that the adsorption process is spontaneous and endothermic, with significant randomness at the adsorbent-adsorbate interface. However, desorption and regeneration tests showed that the efficiency of FAP decreases upon reuse. Despite this, the abundance of natural FAP balances its drawbacks. MD simulations confirmed that adsorption is exothermic and spontaneous, especially in basic conditions, where Van der Waals interactions dominate. These findings suggest that natural FAP has significant potential for dye removal in wastewater treatment applications.

Methods: The effects of various parameters, including dye concentration, temperature, adsorbent mass, and pH, on the adsorption capacity of FAP were studied. Experimental conditions included an initial dye concentration of 20 mg/L, adsorbent mass of 1 g/L, pH of 12, and temperature of 298 K. The Freundlich model was used to describe the adsorption process, while MD simulations provided insights into the adsorption mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-025-06277-zDOI Listing

Publication Analysis

Top Keywords

dye removal
12
natural fluorapatite
8
adsorption
8
adsorption capacity
8
freundlich model
8
adsorption process
8
natural fap
8
dye concentration
8
adsorbent mass
8
dye
6

Similar Publications

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method.

Molecules

January 2025

Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.

View Article and Find Full Text PDF

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!