Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury. Additionally, astrocytes actively participate in neuroinflammatory responses. However, there is currently no comprehensive overview summarizing the role of astrocytes in hyperoxia-induced brain injury and the NLRP3 signaling pathways in astrocytes.

Objective: This article aims to provide an overview of studies reported in the literature investigating the pathological role of astrocyte involvement during the inflammatory response in hyperoxia-induced brain injury, the mechanisms of hyperoxia activateing the NLRP3 inflammasome to mediate pyroptosis in astrocytes, and the potential therapeutic effects of drugs targeting the NLRP3 inflammasome to alleviate hyperoxia-induced brain injury.

Method: We searched major databases (including PubMed, Web of Science, and Google Scholar, etc.) for literature encompassing astrocytes, NLRP3 inflammasome, and pyroptosis during hyperoxia-induced brain injury up to Oct 2024. We combined with studies found in the reference lists of the included studies.

Conclusion: In this study, we elucidated the transition of function in astrocytes and activation mechanisms under hyperoxic conditions, and we summarized the potential upstream of the trigger involved in NLRP3 inflammasome activation during hyperoxia-induced brain injury, such as ROS and potassium efflux. Furthermore, we described the signaling pathways of the NLRP3 inflammasome and pyroptosis executed by GSDMD and GSDME in astrocytes under hyperoxic conditions. Finally, we summarized the inhibitors targeting the NLRP3 inflammasome in astrocytes to provide new insights for treating hyperoxia-induced brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-024-01984-4DOI Listing

Publication Analysis

Top Keywords

hyperoxia-induced brain
40
brain injury
36
nlrp3 inflammasome
28
hyperoxia-induced
10
brain
10
injury
9
astrocytes
8
pyroptosis astrocytes
8
astrocytes hyperoxia-induced
8
nlrp3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!