A generalized structured coalescent for purifying selection without recombination.

Genetics

Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland.

Published: January 2025

Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent. In this study, we extend an existing approach, the fitness-class coalescent, to incorporate arbitrary levels of purifying selection in haploid populations. This model offers a comprehensive framework for exploring the influence of purifying selection in a wide range of demographic scenarios. Moreover, our research reveals potential sources of qualitative and quantitative biases in demographic inference, highlighting the significant risk of attributing genetic patterns to past demographic events rather than purifying selection. This work expands our understanding of the complex interplay between selection, drift, and population dynamics, and how purifying selection distorts demographic inference.

Download full-text PDF

Source
http://dx.doi.org/10.1093/genetics/iyaf013DOI Listing

Publication Analysis

Top Keywords

purifying selection
28
selection
10
demographic inference
8
purifying
7
generalized structured
4
structured coalescent
4
coalescent purifying
4
selection recombination
4
recombination purifying
4
selection critical
4

Similar Publications

Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

First Report and Phylogenetic Analysis of Mitochondrial Genomes of and .

Insects

December 2024

Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China.

The mitochondrial genome, highly conserved across species, is crucial for species identification, phylogenetic analysis, and evolutionary research. and , two species with significant forensic value, have been understudied in terms of genetic data. In this study, the complete mitochondrial genomes of (15,623 bp) and (15,729 bp) were sequenced and analyzed.

View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!