Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction. The faster carrier growth and recombination, as well as higher effective mobility in MOF, is attributed to lesser separation between redox-active DPTTZ molecules (3.75 Å) than the bare ligand system (4 Å), which results in higher through-space electronic coupling. The photoreduction ability of the MOF with visible color change was utilized to show photochromic behavior, and further fabrication to a solid-state photochromic device for a potential autodarkening material under UV irradiation was conducted.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03445DOI Listing

Publication Analysis

Top Keywords

charge transfer
16
through-space intervalence
8
intervalence charge
8
metal-organic framework
8
photochromic behavior
8
electronic coupling
8
quantification through-space
4
charge
4
transfer
4
transfer cofacial
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!