Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples. The Kaplan‒Meier method and multivariate analysis were used to analyse the relationship between SENP5 expression and ESCC prognosis. Stable SENP5-knockdown (KD) cell lines and conditional knockout (cKO) mice were established to verify the biological function of SENP5. Further RNA-seq comparisons between short hairpin SENP5 (shSENP5)- and short hairpin negative control (shNC)-transfected ESCC cell lines were conducted, and the nuclear factor kappa B (NF-κB)- axis was identified through bioinformatics analysis. The correlation of SENP5 with signalling pathway components was validated via real-time quantitative PCR (qPCR), western blotting (WB), and immunoprecipitation.
Results: Our study revealed that SENP5 was upregulated in human and mouse ESCC samples, and clinical data analysis revealed a correlation between high SENP5 expression and poor patient prognosis. SENP5 knockdown inhibited tumorigenesis and growth and suppressed the proliferation, migration, and invasion of ESCC cell lines . Our study also revealed that SENP5 knockdown enhanced the SUMO1-mediated SUMOylation of NF-kappa-B inhibitor alpha (IκBα), thereby inhibiting the activation of the NF-κB- axis, which subsequently suppresses ESCC cell energy metabolism and impedes ESCC progression.
Conclusions: Suppression of SENP5 slows the development of ESCC by inhibiting the NF-κB axis through SUMO1-mediated SUMOylation of IκBα. Our research suggests that SENP5 could serve as a prognostic indicator and a target for therapeutic intervention for ESCC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL27047 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Nat Commun
October 2024
State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.
The three-stranded DNA-RNA triplex hybridization is involved in various biological processes, including gene expression regulation, DNA repair, and chromosomal stability. However, the DNA-RNA triplex mediating mechanisms underlying tumorigenesis remain to be fully elucidated. Here, we show that peptidylprolyl isomerase A (PPIA) serves as anchor to recruit GAU1 lncRNA by interacting with exon 4 of GAU1 and enhances the formation of SENP5/GAU1 DNA-lncRNA triplex.
View Article and Find Full Text PDFInt J Neurosci
May 2024
Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored.
Methods: In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured Quantitative Real-Time PCR (qRT-PCR) and western blot assays.
CNS Neurosci Ther
April 2024
School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
Objectives: Astragaloside IV (AST IV) and ligustrazine (Lig), the main ingredients of Astragali Radix and Chuanxiong Rhizoma respectively, have demonstrated significant benefits in treatment of cerebral ischemia -reperfusion injury (CIRI); however, the mechanisms underlying its benificial effects remain unclear. SUMO-1ylation and deSUMO-2/3ylation of dynamin-related protein 1 (Drp1) results in mitochondrial homeostasis imbalance following CIRI, which subsequently aggravates cell damage. This study investigates the mechanisms by which AST IV combined with Lig protects against CIRI, focusing on the involvement of SUMOylation in mitochondrial dynamics.
View Article and Find Full Text PDFBiofactors
October 2024
Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
Oxidative stress is employed to depict a series of responses detrimental to normal cellular functions resulting from an imbalance between intracellular oxidants, mainly reactive oxygen species and antioxidant defenses. Oxidative stress often contributes to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. In this process, the relationship between small ubiquitin-like modifier (SUMO) and oxidative stress has garnered significant attention, with its posttranslational modification (PTM) frequently serving as a marker of oxidative stress status.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!