Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles. By confocal microscopy, lysosome-like massive vacuoles (LysoTracker Deep Red), autophagosome-like massive vacuoles (LC3B-enhanced green fluorescent protein (EGFP)), and autolysosome-like massive vacuoles (LC3B-EGFP LysoTracker Deep Red) in starved HEK293T cells were observed.
Results: In this study, we demonstrated that nutrient deficiency can induce the formation of massive vacuoles that appear highly electron-lucent in HEK293T cells. Additionally, these massive vacuoles, resulting from nutrient depletion, can originate from various organelles, including small vacuoles, autophagosomes, lysosomes, and autolysosomes. We found that massive vacuoles could form through two primary mechanisms: the accumulation of small vacuoles into larger vacuoles or the fusion of homogeneous or heterogeneous vacuoles. Further analysis revealed that the membranes of massive vacuoles, regardless of origin, were composed of a bilayer membrane structure. As the volume of the massive vacuoles increased, the cytoplasm and nucleus were displaced toward the periphery of the cells, leading to the formation of signet ring-like cells. Interestingly, we provided evidence that complete massive vacuoles or autophagosome-like massive vacuoles can be released and exist independently outside HEK293T cells.
Conclusions: Nutrient deprivation induces the formation of heterogeneous, massive vacuoles in human embryonic kidney cells, some of which contribute to the development of signet ring cells, while others lead to extracellular vacuole formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL26796 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Front Cell Dev Biol
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes.
View Article and Find Full Text PDFVirchows Arch
December 2024
Department of Pathology, VU University Medical Center, Room 0E48, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands.
Lipoid pneumonia is a rare entity most often associated with inhalation of foreign material (i.e. "fire-eater's lung"), silicone injection, and severe trauma.
View Article and Find Full Text PDFElife
December 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin.
View Article and Find Full Text PDFPLoS Pathog
November 2024
Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
BK polyomavirus (BKPyV) is a ubiquitous human virus that establishes a persistent infection in renal tubular epithelial cells and mainly causes disease in kidney transplant recipients. The closely related simian polyomavirus SV40 is known to cause cytoplasmic vacuolization in simian kidney cells, possibly increasing progeny release and cell death. This study aimed to determine whether BKPyV causes cytoplasmic vacuolization in primary human renal proximal tubule epithelial cells (RPTECs) and to investigate its potential role in the replication cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!