HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Published: January 2025

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection. However, the function and localization mechanisms of ATRX at mitotic centromeres remain largely unresolved.

Methods: The clustered regularly interspaced short palindromic repeats with CRISPR-associated protein 9 (CRISPR-Cas9) system and overexpression approaches were employed alongside immunofluorescence to investigate the mechanism of ATRX localization at the centromere. To study the binding mechanism between ATRX and heterochromatin protein 1 (HP1), both full-length and truncated mutants of hemagglutinin (HA)-ATRX were generated for co-immunoprecipitation and glutathione S-transferase (GST)-pull assays. Wild-type ATRX and HP1 binding-deficient mutants were created to investigate the role of ATRX binding to HP1 during mitosis, with the Z-Leu-Leu-Leu-al (MG132) maintenance assay, cohesion function assay, and kinetochore distance measurement.

Results And Conclusions: Our research demonstrated that HP1α, HP1β, and HP1γ facilitate the positioning of ATRX within the mitotic centromere area through their interaction with the first two [P/L]-X-V-X-[M/L/V] (PxVxL)motifs at the N-terminus of ATRX. ATRX deficiency causes aberrant mitosis and decreased centromeric cohesion. Furthermore, reducing Wapl activity can bypass the need for ATRX to protect centromeric cohesion. These results provide insights into the mechanism of ATRX's centromeric localization and its critical function in preserving centromeric cohesion by reducing Wapl activity in human cells.

Download full-text PDF

Source
http://dx.doi.org/10.31083/FBL26426DOI Listing

Publication Analysis

Top Keywords

atrx
13
wapl activity
12
centromeric cohesion
12
centromeric localization
8
atrx mitotic
8
mechanism atrx
8
cohesion reducing
8
reducing wapl
8
cohesion
6
centromeric
5

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.

View Article and Find Full Text PDF

High-Grade Astrocytoma With Piloid Features.

Arch Pathol Lab Med

January 2025

From the Department of Pathology, University of Michigan Medical School, Ann Arbor.

Context.—: High-grade astrocytoma with piloid features (HGAP) is a newly recognized glioma defined by its methylation profile. Understanding of its clinical, histologic, and molecular characteristics continues to evolve.

View Article and Find Full Text PDF

DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!