Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations. For other antivirals where resistance has been a challenge, we have demonstrated that the likelihood of resistance can be minimized by designing inhibitors that leverage the evolutionary constraints of the target. Here, we characterize a series of 3C inhibitors against EV68-3C protease through enzyme inhibition, protein crystallography, and structural analysis. We have determined and analyzed three high-resolution inhibitor-bound crystal structures of EV68-3C protease, which revealed possible sites of resistance mutations, a key structural water molecule conserved during ligand binding, and the conformational flexibility of the catalytic histidine H40. This structural analysis combined with enzymatic assays provides insights for the rational design of inhibitors that are robust against resistance toward developing antiviral treatments for EV68 infections.

Download full-text PDF

Source
http://dx.doi.org/10.3390/v17010075DOI Listing

Publication Analysis

Top Keywords

structural analysis
12
resistance mutations
8
ev68-3c protease
8
inhibitors
5
resistance
5
structural
4
analysis inhibitor
4
inhibitor binding
4
binding enterovirus-d68
4
protease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!