The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs). Key advancements in dsRNA production, including cost-effective microbial synthesis and in vitro methods, are examined alongside delivery techniques such as spray-induced gene silencing (SIGS) and nanocarrier-based systems. Strategies for enhancing dsRNA stability, including the use of nanomaterials like layered double hydroxide nanosheets and carbon dots, are discussed to address environmental degradation challenges. Practical applications of this technology against various plant viruses and its potential to ensure food security are emphasized. The review also delves into regulatory considerations, risk assessments, and the challenges associated with off-target effects and pathogen resistance. By evaluating both opportunities and limitations, this review underscores the role of exogenous dsRNA as a sustainable solution for achieving viral disease resistance in plants.

Download full-text PDF

Source
http://dx.doi.org/10.3390/v17010049DOI Listing

Publication Analysis

Top Keywords

viral disease
8
disease resistance
8
resistance plants
8
plant viral
8
viral
5
exogenous dsrna-mediated
4
dsrna-mediated rnai
4
rnai mechanisms
4
mechanisms applications
4
applications delivery
4

Similar Publications

Purpose: To examine differences in unstable housing and health-risk behaviors and experiences by sexual identity among U.S. high school students.

View Article and Find Full Text PDF

Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.

Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.

View Article and Find Full Text PDF

Introduction: The present study aimed to explore the epidemiologic threats and factors associated with the coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) epidemic that emerged in Egypt during the second COVID-19 wave. The study also aimed to explore the diagnostic features and the role of surgical interventions of CAM on the outcome of the disease in a central referral hospital.

Methodology: The study included 64 CAM patients from a referral hospital for CAM and a similar number of matched controls from COVID-19 patients who did not develop CAM.

View Article and Find Full Text PDF

Introduction: This study aimed to analyze the levels of MMP-9 and TIMP-1 as biomarkers for identifying lung anatomical and functional abnormalities in coronavirus disease 2019 (COVID-19).

Methodology: Adult COVID-19 patients hospitalized between October and December 2021 were included in the study. MMP-9 and TIMP-1 levels were measured from the blood.

View Article and Find Full Text PDF

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!