Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone. However, systemic dexamethasone requires large doses to surpass the blood brain barrier in therapeutic quantities, which is associated with significant side effects. The aim of this study was to investigate a biodegradable, dextran-hydroxyethyl methacrylate (dex-HEMA) based hydrogel, containing polymeric micelles loaded with dexamethasone and liposomes encapsulating dexamethasone phosphate for localized and prolonged delivery.
Methods: Poly(ethylene glycol)--poly(-2-benzoyloxypropyl methacrylamide (mPEG--p(HPMA-Bz)) micelles were loaded with dexamethasone and characterized. The dexamethasone micelles, together with dexamethasone phosphate liposomes, were dispersed in an aqueous dex-HEMA solution followed by radical polymerization using a photoinitiator in combination with light. The kinetics and mechanisms of drug release from this hydrogel were determined.
Results: The diameter of the nanoparticles was larger than the mesh size of the hydrogel, rendering them immobilized in the polymer network. The micelles immediately released free dexamethasone from the hydrogel for two weeks. The dexamethasone phosphate loaded in the liposomes was not released until the gel degraded and intact liposomes were released, starting after 15 days. The different modes of release result in a biphasic and sequential release profile of dexamethasone followed by dexamethasone phosphate liposomes.
Conclusions: The results show that this hydrogel system loaded with both dexamethasone polymeric micelles and dexamethasone phosphate loaded liposomes has potential as a local delivery platform for the sequential release of dexamethasone and dexamethasone phosphate, for the intracranial treatment of glioblastoma associated edema.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/pharmaceutics17010127 | DOI Listing |
Pharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia. Electronic address:
Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
Egyptian Drug Authority (EDA), P.O. Box 29, Giza, Egypt. Electronic address:
Precise determination of veterinary pharmaceutical concentrations represents a critical foundation for delivering safe and efficacious animal healthcare interventions. Two synthetic glucocorticoids - dexamethasone sodium phosphate (DXM) and prednisolone acetate (PRD) - are extensively employed in veterinary medicine due to their potent anti-inflammatory capabilities. Our research presents a novel, cost-effective, and environmentally sustainable analytical methodology that enables simultaneous quantification of DXM and PRD within binary veterinary formulations.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Biomed Mater
October 2024
Department of Anatomy, Government Medical College, Nagpur 440003, Maharashtra, India.
Anterior uveitis is one of the most prevalent forms of ocular inflammation caused by infections, trauma, and other idiopathic conditions if not treated properly, it can cause complete blindness. Therefore, this study aimed to formulate and evaluate dexamethasone sodium phosphate (DSP) loaded polyelectrolyte complex (PEC) nanoparticles (NPs) for the treatment of anterior uveitis. DSP-loaded PEC-NPs were formed through complex coacervation by mixing low molecular weight chitosan and the anionic polymer carboxy methyl cellulose (CMC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!