Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

Published: January 2025

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method. The physicochemical properties of CUR-loaded SLNs were evaluated, including their size, stability, and release profile. Antimicrobial testing was conducted against both sessile and planktonic populations. Cytotoxicity was assessed on human gingival fibroblasts. The CUR-loaded SLNs exhibited about 200 nm and a -25 mV surface potential, and the encapsulation of CUR did not affect the physicochemical properties of SLNs. CURs were released from SLNs in a controlled and sustained manner over 100 h. The nanoparticles remained stable for at least two months when stored at 4 °C or 25 °C, making them suitable for clinical use. Antioxidant activity was confirmed through DPPH and ABTS assays. Free CUR significantly reduced the planktonic CFU counts by approximately 65% after 24 h of exposure. However, this inhibitory effect diminished with longer exposure times (48 and 72 h). Antimicrobial activity studies of CUR-loaded SLNs showed dose- and time-dependent effects, in the 2.5-10 µg/mL range, against both sessile and planktonic populations, over 24 to 72 h. The CUR-loaded SLNs showed good cytocompatibility with human fibroblasts up to 2.5 μg/mL, suggesting low toxicity. CUR-loaded SLNs demonstrate significant antimicrobial activity against , along with good cytocompatibility, indicating their potential as an effective adjunct therapy in endodontic treatments.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics17010108DOI Listing

Publication Analysis

Top Keywords

cur-loaded slns
20
lipid nanoparticles
12
slns
9
solid lipid
8
physicochemical properties
8
sessile planktonic
8
planktonic populations
8
antimicrobial activity
8
good cytocompatibility
8
cur-loaded
6

Similar Publications

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Efficiency.

ACS Omega

October 2022

Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae 50834, South Korea.

Curcumin (Cur) has anticancer properties but exhibits poor aqueous solubility, permeability, and photostability. In this study, we aimed to develop a solid lipid nanoparticle (SLN) system to enhance Cur bioavailability. The characteristics of Cur-loaded SLNs prepared by sonication were evaluated using UV-vis and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Curcumin (Cur) is a natural compound that exhibited therapeutic effects against various liver injuries however Cur showed poor water solubility and bioavailability. This study aimed to design Cur-loaded solid lipid nanoparticles (SLNs) and to evaluate the hepatoprotective and antioxidant effects in a model of acute hepatotoxicity induced by paracetamol (PCM) overdose compared to the raw Cur and N-acetylcysteine (NAC). SLNs were prepared by emulsion/solvent evaporation method and 3 factorial design was employed.

View Article and Find Full Text PDF

Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles.

Int J Nanomedicine

January 2017

Tenth People's Hospital, School of Life Science and Technology, Tongji University.

Curcumin (Cur) is a promising photosensitizer that could be used in photodynamic therapy. However, its poor solubility and hydrolytic instability limit its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) in order to improve its therapeutic activity.

View Article and Find Full Text PDF

Curcumin (Cur) is a naturally derived, novel anti-inflammatory agent, but its poor solubility limits its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) to improve its anti-inflammatory activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using emulsification and low-temperature solidification methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!