/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model. : The micronized FP/SX/TB-loaded capsule was prepared by sieving, blending, and filling capsules. Capsule suitability of the drugs was investigated from the comparison of the stability of drugs within various capsule formulations to that of commercial products. The particle size of the drugs was adjusted using spiral air jet milling, and the ratio of lactose hydrate carriers was optimized by comparing the aerodynamic particle size distribution (APSD) with that of commercial products. To investigate the bioequivalence of micronized FP/SX/TB-loaded DPI to commercial products, the dissolution profile of FP/SX/TB particles and pharmacokinetics in rats were evaluated and compared to commercial products. : Capsules with hydroxypropyl methylcellulose (HPMC) without a gelling agent showed superior stability of the drugs compared to commercial products. The deposition pattern was influenced by the particle size of the drugs, and fine particle mass exhibited a significant correlation with the amount of fine carrier. Micronized FP/SX/TB-loaded DPI gave a similar APSD and dissolution profile compared to the commercial products and showed dose uniformity by the DPI device. Furthermore, micronized FP/SX/TB-loaded DPI exhibited bioequivalence to commercial products, as evidenced by no significant differences in pharmacokinetic parameters following intratracheal administration in rats. : A novel triple-combination DPI containing FP/SX/TB was successfully developed, demonstrating comparable pharmacological performance to commercial products. Optimized FP/SX/TB-loaded DPI with HPMC capsule achieved bioequivalence in rat studies, suggesting its potential for improved patient compliance and therapeutic outcomes. This novel single-device DPI offers a promising alternative for triple therapy in pulmonary diseases.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics17010103DOI Listing

Publication Analysis

Top Keywords

commercial products
40
micronized fp/sx/tb-loaded
16
fp/sx/tb-loaded dpi
16
particle size
12
compared commercial
12
commercial
10
products
10
dry powder
8
powder inhaler
8
pulmonary diseases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!