Formulation Design of Orally Disintegrating Film Using Two Cellulose Derivatives as a Blend Polymer.

Pharmaceutics

Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.

Published: January 2025

: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs. : Placebo ODFs were prepared using polymer mixtures with blend ratios ranging from 20% to 80% HPC with HPMC. Mechanical properties, including tensile strength, elastic modulus, elongation at break, and folding endurance, as well as disintegration times, were evaluated. Additionally, blend films incorporating donepezil hydrochloride (DH) as a model active pharmaceutical ingredient (API) were prepared and assessed to determine their mechanical properties and disintegration behavior. : Blend films were successfully formed using HPMC/HPC solutions. The 40/60 and 20/80 HPMC/HPC blends exhibited the lowest mechanical strength and elongation, whereas blends containing more than 40% HPC demonstrated shorter disintegration times. Films with DH were successfully formed, though the addition of DH reduced tensile strength and elongation. The decline in mechanical properties was mitigated in HPMC/HPC blend films. Our results, including DSC and FTIR results, led us to conclude that the HPMC/HPC blend films were micro-immiscible, but they were macro-miscible when the amount of the minor component was sufficiently small. : HPMC/HPC blends in appropriate ratios are effective as film-forming polymers for ODFs. The addition of DH impacts the mechanical properties, but the decline is less pronounced when using HPMC/HPC blends.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics17010084DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
blend films
16
hpmc/hpc blends
12
orally disintegrating
8
disintegrating film
8
tensile strength
8
disintegration times
8
films formed
8
strength elongation
8
hpmc/hpc blend
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!