: The tocotrienol-rich fraction (TRF) is a lipid-soluble vitamin that has good antioxidant and anti-inflammatory properties. The TRF is widely studied as a potential treatment for various diseases, including bone diseases. However, its application is limited due to its poor oral bioavailability profile, warranting an innovative approach to overcome its pharmacokinetic limitations. Recently, the nano-hydroxyapatite (nHA) has been investigated as a drug delivery vehicle for various drugs and active compounds owing to its excellent biocompatibility, biodegradability, and osteogenic properties. The nHA is also a well-known biomaterial which has chemical and structural similarities to bone minerals. Hence, we aim to explore the use of the nHA as a potential nanocarrier for the TRF. : In this study, we develop and optimize the formulation of an nHA-encapsulating TRF (nHA/TRF) by employing the response surface methodology (RSM). : RSM outcomes reveal that the mass of the nHA, the concentration of the TRF, and the incubation time have a significant effect on the particle size, zeta potential, and encapsulation efficiency of the nHA/TRF. The outcomes for the optimized formulation are not significantly different from the predicted RSM outcomes. The optimized nHA/TRF formulation is freeze-dried and results in an average particle size of ~270 nm, a negative zeta potential value of ~-20 mV, a polydispersity index of <0.4, and an encapsulation efficiency of ~18.1%. Transmission electron microscopy (TEM) shows that the freeze-dried nHA/TRF has a spherical structure. : Taken together, the above findings indicate that the nHA may be established as a nanocarrier for efficient delivery of the TRF, as demonstrated by the promising physical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/pharmaceutics17010010 | DOI Listing |
Pharmaceutics
December 2024
Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
: The tocotrienol-rich fraction (TRF) is a lipid-soluble vitamin that has good antioxidant and anti-inflammatory properties. The TRF is widely studied as a potential treatment for various diseases, including bone diseases. However, its application is limited due to its poor oral bioavailability profile, warranting an innovative approach to overcome its pharmacokinetic limitations.
View Article and Find Full Text PDFJ Nutr Metab
January 2025
Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.
Tocotrienols, isomers of vitamin E, may provide an effective nutritional strategy to mitigate common cardiovascular risks such as dyslipidemia, inflammation, and oxidative stress in patients with chronic kidney disease (CKD). This double-blind, placebo-controlled, randomized clinical trial aimed to evaluate the effects of a tocotrienol-rich fraction (TRF) supplementation (300 mg/day) on oxidative stress and inflammatory markers, including transcription factors in nondialysis (ND) and hemodialysis (HD) CKD patients for three months. Interleukin-6, tumor necrosis factor- (IL-6 and TNF-), C-reactive protein (CRP), lipid peroxidation, biochemical parameters, and transcription factors such as NRF2 and NF-B mRNA expression were evaluated.
View Article and Find Full Text PDFIrisin, a novel adipomyokine, has been proposed to be a therapeutic agent against obesity-related metabolic disease. Royal Jelly (RJ) and tocotrienol-rich fraction (TRF) are suggested to promote obesity and its related problems through potential mutual mechanistic pathways. This investigation intended to evaluate the glycemic and inflammation-promoting effects of RJ, TRF, and their combinations to evaluate their synergic effects through irisin action in obese rats induced by a high-fat diet (HFD) that underwent a calorie restriction diet (CRD).
View Article and Find Full Text PDFF1000Res
September 2024
Hovid (M) Ltd, Ipoh, Perak, Malaysia.
Background: Vitamin E from palm oil, known as the tocotrienol-rich fraction (TRF), has been shown to have immune-enhancing activity. To date, only one dose of TRF (400 mg daily) has been tested in a clinical trial. The proposed study will evaluate the immune-enhancing activity effects of lower doses (200, 100 and 50 mg) in a clinical trial using an influenza vaccine as the immunological challenge.
View Article and Find Full Text PDFBMC Complement Med Ther
August 2024
Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia.
Background: Tocotrienol is a vitamin E analogue that is known to exert anti-inflammatory and antioxidant effects. Hence, in the current study, the effects of TRF on the expression of pro- and anti-apoptotic proteins in the streptozotocin-induced diabetic rat retinas were investigated. The effect of TRF on the visual behaviour of rats was also studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!