Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN. Key findings included the identification of components of the plant innate immune system, such as differentially regulated R genes (mainly LRRs), and activation/deactivation of virus resistance pathways, including RNA interference (RNAi) via (AGO), , and the ubiquitin-proteasome system (UPS) via and . Genes associated with redox signaling, transcription factors, and cell modification were also differentially expressed. Additionally, the expression of translation initiation and elongation factors, and , correlated with the presence of MLN viruses. These findings provide valuable insights into the molecular mechanisms of MLN resistance and highlight potential gene candidates for engineering or selecting MLN-resistant maize germplasm for SSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/plants14020295 | DOI Listing |
Mol Plant
January 2025
Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene , cloned from a newly found MS mutant .
View Article and Find Full Text PDFGenes (Basel)
January 2025
Faculty of Biology, University of Bialystok, Ciołkowskiego 1J Street, 15-245 Białystok, Poland.
Background: The patterns of inbreeding coefficients () and fine spatial genetic structure (FSGS) were evaluated regarding the mating system and inbreeding depression of food-deceptive orchids, , var. , and , from NE Poland.
Methods: We used 455 individuals, representing nine populations of three taxa and AFLPs, to estimate percent polymorphic loci and Nei's gene diversity, which are calculated using the Bayesian method; ; ; FSGS with the pairwise kinship coefficient (); and AMOVA in populations.
Chin J Nat Med
January 2025
Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China. Electronic address:
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!