Silicon Effects Depend upon Insect Herbivore Guild and Has Limited Influence on Gall-Inducing Insects of .

Plants (Basel)

Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, Brazil.

Published: January 2025

Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role of silicon in , focusing on its effects on herbivory by insects. We hypothesize that while silicon strengthens plant tissues and reduces feeding by external herbivores, it may have a limited effect on internal feeders, such as gall-inducing insects. Our results indicate that silicon accumulation in leaves significantly reduces herbivory by chewing insects but has no direct effect on the occurrence of gall-inducing insects. Silicon content in galled tissues was lower compared to healthy leaves, suggesting that gall-inducing insects may manipulate silicon distribution to mitigate its defensive effects. Our results indicate that hypersensitivity reactions were positively influenced by silicon, highlighting the role of this element in enhancing localized defense mechanisms. Our findings reveal silicon's tissue-specific roles in plant defense, emphasizing the need for more research on its nuanced interactions with endophytic herbivores and implications for ecological applications. This research contributes to the literature on silicon's multifaceted role in plant-herbivore interactions and its potential applications in sustainable pest management.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants14020250DOI Listing

Publication Analysis

Top Keywords

gall-inducing insects
20
silicon
8
insects silicon
8
plant defense
8
feeding external
8
external herbivores
8
endophytic herbivores
8
insects
7
gall-inducing
5
silicon effects
4

Similar Publications

Silicon Effects Depend upon Insect Herbivore Guild and Has Limited Influence on Gall-Inducing Insects of .

Plants (Basel)

January 2025

Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão 49107-230, Brazil.

Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role of silicon in , focusing on its effects on herbivory by insects.

View Article and Find Full Text PDF

The aromatic aldehyde synthase (AAS), PonAAS2, from the gall-inducing sawfly has been identified as a biosynthetic enzyme for indole-3-acetic acid (IAA), a key molecule of the plant hormone auxin, which is thought to play a role in gall induction. Unlike other insect AASs that convert Dopa, PonAAS2 uniquely converts L-tryptophan (Trp) into indole-3-acetaldehyde, a precursor of IAA. In this study, an examination of AAS enzymes from various insect species revealed that the ability to convert Trp has been acquired in only a very limited taxonomic group.

View Article and Find Full Text PDF

Conflicting Dynamics of Galling and Pollination: (Hymenoptera, Eulophidae), a Specialized Parasitic Galler in Pistillate Flowers of (Araceae).

Plants (Basel)

December 2024

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-130, SP, Brazil.

In the complex dynamics of plant-insect interactions, the specialized galling of reproductive structures presents unique evolutionary adaptations. This study investigates the parasitic relationship between (Hymenoptera, Eulophidae), an ovary-galling wasp, and the inflorescences of (Araceae). We employed field experiments and histological analyses to investigate the mechanisms driving this interaction.

View Article and Find Full Text PDF
Article Synopsis
  • The Hawaiian mealybug genus Phyllococcus was established in 1916 and is known for causing gall formations on specific host plants, with a focus on the species Ph. oahuensis.
  • Research reveals a new record of Ph. oahuensis on Maui and provides detailed descriptions of a new species, Ph. cryptocaryae, which also induces galls on the leaves of a different plant, Cryptocarya mannii.
  • Both mealybug species and a related psyllid are critically limited to a single tree of C. mannii in Oahu, making them highly susceptible to extinction.
View Article and Find Full Text PDF

An insect pheromone primes tolerance of herbivory in goldenrod plants.

Ecology

January 2025

Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.

Environmental cues that predict increased risk of herbivory can prime plant defenses; however, few studies have explored how such cues elicit broader plant responses, including potential effects on plant growth and other resource allocations that may affect tolerance to herbivore damage. We exposed goldenrod plants (Solidago altissima) to varying concentrations of the putative sex pheromone of a gall-inducing herbivore, which has previously been implicated in defense priming. In experiments with two plant genotypes and three herbivore populations, any level of exposure to the pheromone enhanced tolerance of galling, rescuing flower production to levels observed for ungalled plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!