The cover crop (L.) R.Br. (pearl millet) reduces the emergence of weed species in the field through a mechanism that is not fully known. The identification of the allelopathic activity of pearl millet can contribute to the development of no-tillage techniques to produce crops without or with low doses of herbicides. This issue was investigated by testing the effects of extracts from the aerial parts of pearl millet on the germination and growth of the weeds L., L., and (Dammer) O'Donell under laboratory conditions. The ethyl acetate fraction (EAF) at a concentration of 2000 µg mL was inactive on ; it inhibited root length (-72%) and seedling fresh weight (-41%) of , and in the length of primary root and aerial parts and the fresh and dry weight of seedlings were reduced by 63%, 32%, 25%, and 12%, respectively. In roots of seedlings, at the initial development stage, EAF induced oxidative stress and increased electrolyte leakage. At the juvenile vegetative stage, a lower concentration of EAF (250 µg mL) induced a stimulus in seedling growth (+60% in root length and +23% in aerial parts length) that was associated with increased photosynthetic efficiency. However, at higher concentrations (1000 µg mL), it induced the opposite effects, inhibiting the growth of root (-41%) and aerial parts (-25%), with reduced superoxide dismutase activity and photosynthetic efficiency. The stilbenoid pallidol was identified as the main compound in EAF. The allelopathic activity of pearl millet may be attributed, at least in part, to the impairment of energy metabolism and the induction of oxidative stress in weed seedlings, with pallidol possibly involved in this action. Such findings demonstrated that the application of the EAF extract from pearl millet can be a natural and renewable alternative tool for weed control.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants14020222DOI Listing

Publication Analysis

Top Keywords

pearl millet
24
aerial parts
16
oxidative stress
12
cover crop
8
allelopathic activity
8
activity pearl
8
root length
8
µg induced
8
photosynthetic efficiency
8
pearl
6

Similar Publications

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO/SiO Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

Polymers (Basel)

January 2025

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.

View Article and Find Full Text PDF

In the present study, the impact of ultrasonication treatment (US) at varying time duration (10 and 20 min) on pearl millet protein (PMP) was evaluated. The native and ultrasonicated PMP were evaluated for techno-functional properties, zeta potential, particle size, SEM, FTIR, thermal properties and dynamic rheology. The significant (p < 0.

View Article and Find Full Text PDF

Preparation and performance study of carboxymethylated Napier grass (Pennisetum purpureum) cellulose dust suppressant.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:

Coal mines generate significant amounts of dust during production, transportation, and stockpiling, leading to health hazards and environmental pollution. To address the inefficiencies and environmental impact of current chemical dust suppressants, a novel dust suppressant was developed utilizing cellulose derived from Napier grass (NG), modified through carboxymethylation, and supplemented with polyvinyl alcohol (PVA) and polyacrylamide (PAM). Orthogonal experiments identified the optimal ratio of sodium carboxymethyl cellulose (CMC), PAM, PVA, and octyl phenol polyoxyethylene ether (JFC-1) as 1:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!