Cell wall extensibility is a key biophysical characteristic that defines the rate of plant cell growth. It depends on the wall structure and is controlled by numerous proteins that cut and/or (re)form links between the wall constituents. Cell wall extensibility is currently estimated by different in vitro biomechanical tests. We used the creep method, in which isolated cell walls are extended under a constant load and their time-dependent deformation (creep) is recorded to reveal the biophysical basis of growth inhibition of hypocotyls in the presence of 24-epibrassinolide (EBL), one of the most active natural brassinosteroids. We found that EBL rendered the walls of hypocotyl cells softer, i.e., more deformable under mechanical force, which was revealed using heat-inactivated cell walls to eliminate endogenous activities of cell-wall-loosening/tightening proteins. This effect was caused by the altered arrangement of cellulose microfibrils. At the same time, EBL made the walls less extensible, which was detected with native walls under conditions optimized for activities of endogenous cell-wall-loosening proteins. These apparently conflicting changes in the wall mechanics can be an adaptation by which EBL enables plant cells to grow under stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants14020176DOI Listing

Publication Analysis

Top Keywords

cell walls
12
cell wall
8
wall extensibility
8
cell
6
walls
6
wall
5
brassinosteroids render
4
render cell
4
walls softer
4
softer extensible
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.

View Article and Find Full Text PDF

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!