Freeze-drying fresh vegetables and fruits may not only prevent post-harvest losses but also provide a concentrated source of nutrients and phytochemicals. This study focused on the phenolic composition of different freeze-dried products derived from horticultural crop remains (HCRs) in the vegetable and fruit production chain. These products may be considered as a potential health-promoting solution for preventing post-harvest fruit spoiling and losses. The total polyphenolic content (TPC) and the main phenolics were studied using high-performance liquid chromatography (HPLC) with a diode array detector (DAD). Additionally, an in vitro chemical screening of the antioxidant capacity was carried out using the Ferric Reducing Antioxidant Power (FRAP) assay. These analyses were performed together with an investigation of the correlations among phenolics and their antioxidant properties, and a bioinformatic approach was used to estimate the main potential bio-targets in human beings. Furthermore, a statistical approach using Principal Component Analysis (PCA) was carried out for a multivariate characterization of these products. Catechins, flavonols, and phenolic acids were the predominant and most discriminating classes in different products. The TPC values obtained in this study ranged from 366.86 ± 71.30 mg GAE/100 g DW (apple, MD) to 1077.13 ± 35.47 mg GAE/100 g DW (blueberry, MID) and 1102.25 ± 219.71 mg GAE/100 g DW (kaki, KD). The FRAP values ranged from 49.28 ± 2.88 mmol Fe/kg DW (apple, MD) to 80.43 ± 0.02 mmol Fe/kg DW (blueberry, MID) and 79.05 ± 0.21 mmol Fe/kg DW (kaki, KD). The proposed approach may be an effective tool for quality control and valorization of these products. This study showed that the utilization of crop remains can potentially lead to the development of new functional foods, providing additional economic benefits for farmers. Finally, the use of freeze-drying may potentially be a sustainable and beneficial solution for growers who may directly utilize this technology to produce dried products from the crop remains of their fruit productions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants14020168DOI Listing

Publication Analysis

Top Keywords

crop remains
12
mmol fe/kg
12
potential health-promoting
8
blueberry mid
8
products
6
freeze-drying reduction
4
fruit
4
reduction fruit
4
fruit vegetable
4
vegetable chain
4

Similar Publications

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

24-epibrassinolide regulates oxytetracycline-induced phytotoxicity and its detoxification mechanism.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.

View Article and Find Full Text PDF

The basic helix-loop-helix transcription factor PpeUNE12 regulates peach ripening by promoting polyamine catabolism and anthocyanin synthesis.

Plant Physiol Biochem

January 2025

College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:

The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.

View Article and Find Full Text PDF

A Lipoxygenase Gene Modulates Jasmonate Biosynthesis to Enhance Blast Resistance in Rice.

J Exp Bot

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.

Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!