Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles.

Nutrients

ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.

Published: January 2025

Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies. Spermatozoa are particularly vulnerable to oxidative damage due to their high content of polyunsaturated fatty acids (PUFAs) and limited antioxidant defense abilities. OS arises from an imbalance between the production of reactive oxygen species and the capacity to neutralize or repair their adverse effects. Evidence indicates that OS leads to lipid peroxidation, protein oxidation, mitochondrial dysfunction, and genomic instability. Micronutrient-antioxidant therapies can play a key role in infertility improvement by neutralizing free radicals and preventing cellular damage. Many different micronutrients, including L-carnitine, L-glutathione, coenzyme Q10, selenium, and zinc, as well as vitamins complexes, are proposed to improve sperm parameters and male fertility potential. This study aims to review the impact of antioxidant supplementation on semen parameters, including sperm volume, motility, concentration, morphology, genome integrity (maturity and fragmentation), and in vitro fertilization (IVF) outcomes. Antioxidant intake and a balanced lifestyle reduce oxidative stress and mitochondrial dysfunction, enhancing the spermatogenesis and spermiogenesis processes, improving sperm quality, and protecting DNA integrity.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu17020324DOI Listing

Publication Analysis

Top Keywords

male fertility
12
oxidative stress
8
mitochondrial dysfunction
8
micronutrient-antioxidant therapy
4
therapy male
4
fertility improvement
4
improvement art
4
art cycles
4
cycles today
4
today accumulating
4

Similar Publications

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles.

Nutrients

January 2025

ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.

Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.

View Article and Find Full Text PDF

Studies in humans indicate that certain serovars are more pathogenic than others. Specifically, several studies concluded that serovars from the C-complex are more pathogenic than those from the B-complex, although there are reports that do not support this finding. To investigate these results in an animal model, the eight genitourinary serovars were tested in two strains of mice: C3H/HeN and BALB/c.

View Article and Find Full Text PDF

The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.

View Article and Find Full Text PDF

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!