Brucite (Mg(OH)) is a typical precipitate in the mining industry that adversely affects processes such as flotation and thickening. Gaining insights into the physicochemical properties of this mineral is critical for developing strategies to mitigate these challenges and improve operational efficiency. Additionally, incorporating natural-origin polymers aligns with the shift toward more sustainable mining practices. In this study, molecular dynamics simulations were employed to investigate the interaction of brucite with polysaccharides such as cellulose, guar gum, and alginate and to compare these with conventional polymers, including polyacrylamide, hydrolyzed polyacrylamide, and polyacrylic acid, under conditions of pH 11 in low-salinity water. The methodology enhanced adsorption sampling by incorporating additional temporary interactions between the polymer and the brucite surface. The results reveal that neutral polymers exhibit stronger and more stable interactions with brucite compared to charged polymers, which is consistent with the neutral nature of brucite under the studied conditions. Van der Waals forces predominantly govern the adsorption of polysaccharides, while Coulombic forces primarily drive interactions involving polyacrylamides. These findings provide valuable insights into the molecular mechanisms of polymer-brucite interactions, facilitating the development of more effective and sustainable mining additives.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17020227DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
sustainable mining
8
brucite
5
dynamics study
4
study polyacrylamide
4
polyacrylamide polysaccharide-derived
4
polysaccharide-derived flocculants
4
flocculants adsorption
4
adsorption mgoh
4
mgoh surfaces
4

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!