As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity. The results indicated a significant impact of the incorporation of OLE into this polymeric matrix, increasing hydrophobicity, decreasing surface free energy, and enhancing surface roughness, albeit with slight reductions in mechanical properties. Notably, these modified materials exhibited significant bacteriostatic, bactericidal and anti-adhesive activity against both and . Consequently, PLA/PEG/OLE films demonstrated considerable potential for advanced food packaging, facilitating interactions between products and their environment. This capability ensures the preservation and extension of food shelf life, safeguards against microbial contamination, and maintains the overall quality, safety, and integrity of the packaged food. These findings suggest potential pathways for developing more sustainable and effective food packaging films.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17020205DOI Listing

Publication Analysis

Top Keywords

food packaging
12
polylactide-polyethylene glycol
8
olive leaf
8
leaf extract
8
food
6
active polylactide-polyethylene
4
films
4
glycol films
4
films loaded
4
loaded olive
4

Similar Publications

Background And Aims: Chemotherapy is one of the treatments of choice for patients with hematological or head and neck neoplasms. However, chemotherapy promotes elevate occurrence of adverse events and many of them directly impact nutritional status and patients' quality of life, which may include a low treatment tolerance. Suggested mechanisms include inflammation and oxidative stress as contributing factors to adverse effects of chemotherapy.

View Article and Find Full Text PDF

Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties.

View Article and Find Full Text PDF

Structure and properties of chitosan plasticized with hydrophobic short-chain fatty acid cosolvent.

Int J Biol Macromol

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:

The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!