This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains. Based on SEM images, the chains are uniformly distributed on the surface of the sample, fully formed and mature, but their architecture critically depends on composition. The physical and electrical characteristics of composites were extensively studied with regard to the composition and orientation of particles. The higher the concentration of BN platelets, the greater the enhancement of dielectric permittivity, but the effect decreases gradually after reaching a concentration of 15%. The impact of incorporating carbon microfibers into the dielectric permittivity of composites is clearly beneficial, especially when the BN content surpasses 12%. Thermal conductivity showed a significant improvement in all samples with aligned particles, regardless of their composition. For homogeneous materials, the thermal conductivity is significantly enhanced by the inclusion of carbon microfibers, particularly when the boron nitride content exceeds 12%. The biggest increase happened when carbon microfibers were added at a rate of 2%, while the BN content surpassed 15.5%. The thermal conductivity of composites is greatly improved by adding carbon microfibers when oriented particles are present, even at BN content over 12%. When the BN content surpasses 15.5%, the effect diminishes as the fibers within chains are only partly vertically oriented, with BN platelets prioritizing vertical alignment. The outcomes of this study showed improved results for composites with BN platelets and carbon microfibers compared to prior findings in the literature, all while utilizing a more straightforward approach for processing the polymer matrix and aligning particles. In contrast to current technologies, utilizing homologous materials with uniformly dispersed particles, the presented technology reduces ingredient consumption by 5-10 times due to the arrangement in chains, which enhances heat transfer efficiency in the desired direction. The present technology can be used in a variety of industrial settings, accommodating different ingredients and film thicknesses, and can be customized for various applications in electronics thermal management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17020204 | DOI Listing |
Talanta
January 2025
College of Pharmacy, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China. Electronic address:
B vitamins are essential for energy metabolism, nervous health, blood production, and the immune system. Their quantification in nutritional supplements and food is mandatory to manage a correct daily intake and dosage. In this study, a fast and sustainable method for the analysis of 8 B vitamins (VB, VB, VB, nicotinamide, VB, VB, VB, VB) in real samples using a 2D-carbon microfiber fractionation system combined with a triple quadrupole mass spectrometer (2DμCFs-QqQ-MS/MS) is presented.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:
Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.
View Article and Find Full Text PDFAdv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFiScience
December 2024
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK.
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!