Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation. Various percentages of strontium (Sr) doping were examined to improve bioreactivity, biological response, and bone formation, with 3SMBG (3 mol% Sr) showing the highest specific surface area. In vitro biocompatibility tests revealed HA formation on all glass surfaces after immersion in simulated body fluid (SBF), indicated by sheet-like HA morphologies, the presence of PO and CO functional groups, and the amorphous structure along with SrCO crystalline phases corresponding to HA and Sr-HA structures. Sr doping resulted in delayed initial degradation and sustained release of Sr, achieving over 95% cell viability. Surfactant-induced mesoporous structure and Sr incorporation synergistically enhance osteocyte induction and formation in vitro. These findings suggest that Sr-doped MBG, particularly with P123-assisted Sr/Ca substitution, optimizes the material's properties for advanced bone regenerative applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17020187DOI Listing

Publication Analysis

Top Keywords

strontium doping
8
mesoporous bioactive
8
bioactive glass
8
advanced bone
8
bone regenerative
8
pluronic p123
8
surface area
8
synergistic strontium
4
doping surfactant
4
surfactant addition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!