Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system. The thermal response rate of the cavity and the temperature uniformity coefficient are set as optimization objectives to define parameter ranges for orthogonal experiments. The findings indicate that the optimal range for the lateral distance is 20-30 mm, for it is 50-70 mm, and for the vertical distance () it is 3-8 mm. The response surface multiple regression equation derived from the orthogonal experiment data demonstrates a model prediction error rate of 1.8% and 2.4%. Additionally, by applying particle swarm optimization to the regression equation, the study identifies an optimal scheme that reduces system energy consumption by 12.5%, achieves a thermal response rate of 0.75 k/s, decreases the temperature uniformity coefficient by 44.6%, and lowers the temperature difference by 52.17%. This optimization ensures efficient heating of the mold cavity, reduces energy consumption, and enhances the uniformity of the surface temperature distribution, ultimately improving the surface quality of the products.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17020184DOI Listing

Publication Analysis

Top Keywords

temperature uniformity
16
thermal response
16
temperature distribution
12
uniformity coefficient
12
response rate
12
heating
8
cavity surface
8
temperature
8
surface temperature
8
rapid heating
8

Similar Publications

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Numerical Simulation of Airflow Organization in Vulcanization Tanks for Waste Tires.

Polymers (Basel)

January 2025

College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.

Currently, in the domestic practice of retreading tires using vulcanization tanks, some tanks exhibit uneven temperature distributions leading to low retreading success rates. To address that, this paper simulated the temperature and velocity fields during the heating process of vulcanization tanks for waste tire retreading. The results indicated that a higher heating power reduces the time required for the vulcanizing agent to reach the vulcanization condition, but it also increases the difference in tire temperature in the tank, with a severely uneven distribution of the temperature field.

View Article and Find Full Text PDF

Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system.

View Article and Find Full Text PDF

Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!