An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions. The dynamics of sugar consumption during the cultivation were studied by HPLC. The structure and physicochemical properties of BC and tubular BC structures were characterized by FTIR spectroscopy and X-ray diffraction (XRD). Thus, the findings indicate that B-11267, when cultivated in a molasses medium, which is such a cheap waste product in the sugar industry, forms a significant amount of BC with a high crystallinity degree. The BC tubular structures demonstrated great potential for their application in biomedicine as artificial blood vessels and conduits for nerve regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17020179 | DOI Listing |
Polymers (Basel)
January 2025
Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia.
An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions.
View Article and Find Full Text PDFActa Biochim Pol
January 2025
Department of Biotechnology, Indonesia International Institute for Life Sciences, East Jakarta, Indonesia.
Erythritol is a beneficial sugar alcohol that can be used as a sugar substitute for diabetic patients. Erythritol is a bioproduct produced by microorganisms as a response to high osmotic pressure and stress in the growth medium. High concentrations of carbon source substrate can increase the osmotic pressure and provide more nutrient supply for yeast growth and metabolism.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China.
Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, NC 27455, United States. Electronic address:
High production cost is a significant barrier to commercial bacterial nanocellulose (BNC) production. This study addresses this issue using a low-cost molasses and cheese whey medium via Gluconacetobacter hansenii. The one-factor-at-a-time method investigated the effect of critical factors on BNC production, including total sugar and total protein concentrations (g/L), initial pH, and additives such as ethanol and acetic acid (%(v/v)).
View Article and Find Full Text PDFBMC Biotechnol
November 2024
Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!