This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways. The results revealed that increased steric hindrance from methyl groups significantly reduced the degradation rate, particularly in water-containing electrolytes, by hindering water coordination to the Ni center. Among the studied polymers, the highly substituted poly[Ni(Saltmen)] exhibited superior stability with minimal capacity loss. Density functional theory (DFT) calculations further supported that steric protection around the Ni atom effectively lowers the probability of water coordination. These findings suggest that sterically enhanced NiSalen polymers may offer a promising path toward durable supercapacitor electrodes, highlighting the route of molecular engineering to enhance material stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17020178 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2023
Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
The development of robust and industrially viable catalysts from plastic waste is of great significance, and the facile construction of high performance heterogeneous catalyst systems for phenol-quinone conversions remains a grand challenge. Herein, a feasible strategy is demonstrated to reclaim Styrofoam into hierarchically porous nickel-salen-loaded hypercrosslinked polystyrene (PS@Ni-salen) catalysts with high activities through an unusual autocatalytic coupling route. The salen is immobilized onto PS chain by Friedel-Crafts alkylation of benzyl chloride derivatives, and the generated hydrogen chloride coordinately promotes the simultaneous crosslinking and bridge formation between aromatic rings via a Scholl coupling route, leading to hierarchically porous networks.
View Article and Find Full Text PDFPolymers (Basel)
March 2023
Institute of Chemistry, Saint Petersburg University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
Electrochemical energy storage systems have a wide range of commercial applications. They keep energy and power even at temperatures up to +60 °C. However, the capacity and power of such energy storage systems reduce sharply at negative temperatures due to the difficulty of counterion injection into the electrode material.
View Article and Find Full Text PDFMolecules
December 2022
Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia.
The conductivity of the polymeric energy storage materials is the key factor limiting their performance. Conductivity of polymeric NiSalen materials, a prospective class of energy storage materials, was found to depend strongly on the length of the bridge between the nitrogen atoms of the ligand. Polymers obtained from the complexes containing C alkyl and hydroxyalkyl bridges showed an electrical conductivity one order of magnitude lower than those derived from more common complexes with C alkyl bridges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Herein, we report the potential-driven electrochemical transformation carried out in basic media of two Ni salen polymers, (poly(NiSalen)s), abbreviated as poly(-NiSaldMe) and poly(NiSaltMe). These two polymers, with different configurations of methyl substituents on the imine bridge, were used as precursors for the preparation of electrocatalytically active nickel hydroxide [Ni(OH)]-type nanoparticles (NPs) anchored in the polymeric matrix as poly[SalenNi(OH)]. The use of potentiodynamic and potentiostatic electropolymerization conditions for the deposition of polymeric precursors allowed us to control the molecular architecture of poly(NiSalen)s and NPs derived from them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!