Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy. This study aimed to identify α-Mangostin analogs with improved inhibitory properties against KHK-C to address these disorders. A library of 1383 analogs was compiled from chemical databases and the literature. Molecular docking, binding free energy calculations, pharmacokinetic assessments, molecular dynamics simulations, and quantum mechani-cal analyses were used to screen and evaluate the compounds. α-Mangostin's binding affinity (37.34 kcal/mol) served as the benchmark. Sixteen analogs demonstrated binding affinities superior to α-Mangostin (from -45.51 to -61.3 kcal/mol), LY-3522348 (-45.36 kcal/mol), and reported marine-derived inhibitors (from -22.74 to -51.83 kcal/mol). Hits , , , , and not only surpassed these benchmarks in binding affinity, but also exhibited superior pharmacokinetic properties compared to α-Mangostin, LY-3522348, and marine-derived inhibitors, indicating strong in vivo potential. Among these, hit emerged as the best performer, achieving a binding free energy of -61.30 kcal/mol, 100% predicted oral absorption, enhanced metabolic stability, and stable molecular dynamics. Hit emerged as the most promising candidate due to its superior binding affinity, favorable pharmacokinetics, and stable interactions with KHK-C. These findings highlight its potential for treating fructose-driven metabolic disorders, warranting further experimental validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ph18010126 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia.
Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy.
View Article and Find Full Text PDFNeuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFInt J Hepatol
April 2023
Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil.
The alkaloid boldine occurs in the Chilean boldo tree (). It acts as a free radical scavenger and controls glycemia in diabetic rats. Various mechanisms have been proposed for this effect, including inhibited glucose absorption, stimulated insulin secretion, and increased expression of genes involved in glycemic control.
View Article and Find Full Text PDFJ Agric Food Chem
March 2023
College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects .
View Article and Find Full Text PDFEur J Pharmacol
February 2023
College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, PR China. Electronic address:
Accumulating evidence suggests that de novo lipogenesis is a typical characteristic facilitating nonalcoholic fatty liver disease (NAFLD) progression. Gallic acid (GA) is a naturally occurring phenolic acid with metabolic disease-related clinical significance and preclinical benefits. This study aimed to evaluate the anti-steatotic potentials of GA in a fructose-induced NAFLD mouse model featuring a hepatic lipogenic phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!