Unveiling the Phytochemical Diversity and Bioactivity of : A First Report Integrating Experimental and In Silico Approaches.

Pharmaceuticals (Basel)

Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye.

Published: January 2025

: The genus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of . : Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of . The chemical composition was determined using LC-ESI-MS/MS, focusing on key phytochemicals such as hyperoside, kaempferol, 4-hydroxybenzoic acid, and chlorogenic acid. Antioxidant activities were assessed via DPPH, ABTS, and FRAP assays, while enzyme inhibitory activities were evaluated against α-amylase and tyrosinase. In silico molecular docking analyses were conducted to explore the interactions between major compounds and target enzymes. : The leaf extract exhibited the highest total phenolic and flavonoid contents, correlating with superior antioxidant activities, achieving IC values of 16.55 mg/mL, 4.58 mg/mL, and 3.07 mg/mL in DPPH, ABTS, and FRAP assays, respectively. The root extract demonstrated notable α-amylase (IC = 2.99 mg/mL) and tyrosinase (IC = 1.34 mg/mL) inhibitory activities, suggesting potential applications in diabetes and hyperpigmentation management. Molecular docking revealed stable complexes of hyperoside and kaempferol with target enzymes, supporting their roles in observed bioactivities. : This study highlights the bioactivity of extracts, particularly from leaves and roots, supporting their therapeutic potential. Future research should focus on isolating active compounds and conducting in vivo studies to confirm efficacy and elucidate mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph18010103DOI Listing

Publication Analysis

Top Keywords

inhibitory activities
12
chemical composition
8
enzyme inhibitory
8
methanol extracts
8
extracts leaves
8
hyperoside kaempferol
8
antioxidant activities
8
dpph abts
8
abts frap
8
frap assays
8

Similar Publications

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

This study identified the amino acid sequences of peptides generated from the enzymatic hydrolysis of goat milk proteins from two different sources and annotated their functional activities. Peptidomics and molecular docking approaches were used to investigate the antioxidant and ACE inhibitory properties of the unique peptides, revealing the molecular mechanisms underlying their bioactivity. In vitro experiments showed that the IC50 values for ACE inhibition of the four peptides (LSMTDTR, QEALELIR, NIPVGILR, and QAQNVQHY) were 2.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.

Int J Biol Macromol

January 2025

College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:

Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!