Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis. Additionally, it outlines their future directions, such as enhancing their efficacy, selectivity, and investigating potential synergy with other chemotherapeutic agents, offering a promising avenue for developing new therapies for cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ph18010072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!